Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000

Ease of learning explains semantic universals

Shane Steinert-Threlkeld Jakub Szymanik

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Overview	1				

1 Main Question

2 (Machine) Learning

3 Color Terms

4 Quantifiers

5 Responsive Verbs

6 Conclusion

0000	00000	0000000	00000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

Universals in Linguistic Theory

		· · · - ·			
0000	00000	000000	00000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

Universals in Linguistic Theory

Question

What is the range of variation in human languages? That is: which out of all of the logically possible languages that humans could speak, do they in fact speak?

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Explainin	g Univers	sals			

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Explainin	ng Unive	ersals			

> Answer 1: *learnability*. (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	00000000
Explain	ing Univ	ersals			

- Answer 1: *learnability*. (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)
- The universals greatly restrict the search space that a language learner must explore when learning the meanings of expressions. This makes it easier (possible?) for them to learn such meanings from relatively small input.

[Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980; Pullum and Scholz 2002)]

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Explaini	ing Univ	ersals			

- Answer 1: *learnability*. (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)
- The universals greatly restrict the search space that a language learner must explore when learning the meanings of expressions. This makes it easier (possible?) for them to learn such meanings from relatively small input.

[Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980; Pullum and Scholz 2002)]

- In a sense must be true, but:
 - May not help much (Piantadosi 2013)
 - Does not explain which universals are attested.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Explainin	g Univers	sals			

• Answer 2: learnability. (hints in Peters and Westerstahl 2006)

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Explainin	g Univers	sals			

- Answer 2: learnability. (hints in Peters and Westerstahl 2006)
- Universals aid learnability because expressions satisfying the universals are *easier* to learn than those that do not.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Explain	ing Univ	ersals			

- Answer 2: learnability. (hints in Peters and Westerstahl 2006)
- Universals aid learnability because expressions satisfying the universals are *easier* to learn than those that do not.
- Our goal: make good on this claim by providing a single model of learning and using it to explain **semantic** universals from several different domains.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	00000000
Explaini	ng Univ	ersals			

- Answer 2: learnability. (hints in Peters and Westerstahl 2006)
- Universals aid learnability because expressions satisfying the universals are *easier* to learn than those that do not.
- Our goal: make good on this claim by providing a single model of learning and using it to explain **semantic** universals from several different domains.
- In particular, we train *artificial neural networks* to learn the meanings of different kinds of expressions. Within each kind, we will compare expressions satisfying proposed universals to those that do not.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Heat-ma	ар				

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	0000	0000000	00000000000	0000000	00000000
Overviev	V				

1 Main Question

2 (Machine) Learning

3 Color Terms

4 Quantifiers

5 Responsive Verbs

6 Conclusion

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Learnabi	lity and S	Semantic L	Iniversals		

• Our goal: argue that universals arise because expressions satisfying them are *easier to learn*.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Learnal	oility and	Semantic	Universals		

- Our goal: argue that universals arise because expressions satisfying them are *easier to learn*.
- An innovation: using artificial neural networks as a model of learning.

Learn	bility and	Semantic	Universals		
0000	00000	0000000	00000000000	0000000	00000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

Junanue

- Our goal: argue that universals arise because expressions satisfying them are *easier to learn*.
- An innovation: using artificial neural networks as a model of learning.
- Allows us to test many domains quickly, in a roughly biologically plausible fashion.

E 1 1 1	C. I				
0000	00000	0000000	00000000000	00000000	00000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

Existing Study with Children

From: Hunter and Lidz 2013

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
How t	o Train a	Neural Ne	twork		

• The paradigm method is called *supervised learning*.

How to T	rain a N	ourol Notw	orle		
0000	00000	0000000	00000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

- The paradigm method is called *supervised learning*.
- You give the network a whole bunch of *labelled examples*, i.e. a bunch of true/correct input-output pairs.

$\Box_{\alpha \mu} + \alpha T$	Train a Nu	oural Notw	orle		
0000	00000	0000000	00000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

How to Train a Neural Network

- The paradigm method is called *supervised learning*.
- You give the network a whole bunch of *labelled examples*, i.e. a bunch of true/correct input-output pairs.
- After it processes these examples, it lightly adjusts the weights and biases in the network so as to *make its future guesses* better. It tries to *minimize a loss function* between the true output and the network's output.

0000	•••••	000000	00000000000	0000000	00000000
How to	Train a N	leural Netv	work		

- - The paradigm method is called *supervised learning*.
 - You give the network a whole bunch of *labelled examples*, i.e. a bunch of true/correct input-output pairs.
 - After it processes these examples, it lightly adjusts the weights and biases in the network so as to *make its future guesses* better. It tries to *minimize a loss function* between the true output and the network's output.
 - This is called (stochastic) gradient descent; there are fancier variations now.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Overvie	ew				

1 Main Question

2 (Machine) Learning

4 Quantifiers

5 Responsive Verbs

6 Conclusion

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	00000000
The O	rder of Co	olor Terms			

Berlin and Kay 1969; Regier, Kay, and Khetarpal 2007; Gibson et al. 2017 https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Convexit	V				

While natural languages vary in how many color terms they have and which specific colors are denoted, it seems that all color terms denote very 'well-behaved' regions of color space.

• X is *convex* just in case if $x, y \in X$, then for every $t \in (0, 1)$,

 $tx + (1-t)y \in X$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	00000000
Convexi	ty unive	rsal			

Convexity Universal (Gärdenfors 2014; Jäger 2010)

All color terms denote convex regions of color space.

Doutitioning CIE 1 ***** Space							
0000	00000	0000000	0000000000	0000000	000000000		
Question	Model	Colors	Quantifiers	Verbs	Conclusion		

Partitioning CIE-L*a*b* Space

We generated 300 artificial color-naming systems by partitioning the CIELab color space into distinct categories. CIELab approximates human color vision. It is perceptually uniform, meaning that the distance in the space corresponds well with the visually perceived color change.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Degree o	f convexi	ty			

We varied the degree of convexity, measured as the average area of the convex hull of each color that is covered by that color.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	00000000

Convexity: Results

Steinert-Threlkeld and Szymanik 2018a

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Overvie	w				

1 Main Question

2 (Machine) Learning

3 Color Terms

5 Responsive Verbs

6 Conclusion

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	000000000
Determin	ers				

- Meaning (semantics):
- If languages have syntactic constituents (NPs), then their semantic function is to express generalized quantifiers. (Barwise and Cooper 1981)
- Determiners:
 - Simple: every, some, few, most, five, ...
 - Complex: all but five, fewer than three, at least eight or fewer than five, ...

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	000000000
Determin	ers				

- Meaning (semantics):
- If languages have syntactic constituents (NPs), then their semantic function is to express generalized quantifiers. (Barwise and Cooper 1981)
- Determiners:
 - Simple: every, some, few, most, five, ...
 - Complex: all but five, fewer than three, at least eight or fewer than five, ...
- Denote type $\langle 1,1 \rangle$ generalized quantifiers: sets of models of the form $\langle M,A,B \rangle$ with $A,B \subseteq M$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	000000000
Determin	ers				

- Meaning (semantics):
- If languages have syntactic constituents (NPs), then their semantic function is to express generalized quantifiers. (Barwise and Cooper 1981)
- Determiners:
 - Simple: every, some, few, most, five, ...
 - Complex: all but five, fewer than three, at least eight or fewer than five, ...
- Denote type $\langle 1,1\rangle$ generalized quantifiers: sets of models of the form $\langle M,A,B\rangle$ with $A,B\subseteq M$
- For example:

$$\begin{split} \llbracket every \rrbracket &= \{ \langle M, A, B \rangle : A \subseteq B \} \\ \llbracket three \rrbracket &= \{ \langle M, A, B \rangle : |A \cap B| \ge 3 \} \\ \llbracket most \rrbracket &= \{ \langle M, A, B \rangle : |A \cap B| > |A \setminus B| \} \end{split}$$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Monotonicity					

- Many French people smoke cigarettes
 - \Rightarrow Many French people smoke

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Monotonicity					

- Many French people smoke cigarettes
 ⇒ Many French people smoke
- So: 'many' is upward monotone.
| Question | Model | Colors | Quantifiers | Verbs | Conclusion |
|----------|---------|---------|-------------|----------|------------|
| 0000 | 00000 | 0000000 | 00000000000 | 00000000 | 00000000 |
| Monoto | onicity | | | | |

- Many French people smoke cigarettes
 ⇒ Many French people smoke
- So: 'many' is upward monotone.
 - Few French people smoke
 - \Rightarrow Few French people smoke cigarettes

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	00000000
Monoto	onicity				

- Many French people smoke cigarettes
 ⇒ Many French people smoke
- So: 'many' is upward monotone.
 - Few French people smoke
 - \Rightarrow Few French people smoke cigarettes
- So: 'few' is downward monotone.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Monoto	onicity				

- Many French people smoke cigarettes
 ⇒ Many French people smoke
- So: 'many' is upward monotone.
 - Few French people smoke
 - \Rightarrow Few French people smoke cigarettes
- So: 'few' is downward monotone.
 - At least 6 or at most 2 French people smoke cigarettes.

 ⇒ (and *≠*) At least 6 or at most 2 French people smoke.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Monoto	onicity				

- Many French people smoke cigarettes
 ⇒ Many French people smoke
- So: 'many' is upward monotone.
 - Few French people smoke
 - \Rightarrow Few French people smoke cigarettes
- So: 'few' is downward monotone.
 - At least 6 or at most 2 French people smoke cigarettes.

 ⇒ (and *≠*) At least 6 or at most 2 French people smoke.
- So: 'at least 6 or at most 2' is not monotone.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Monoto	onicity U	niversal			

• Q is upward monotone: if $\langle M, A, B \rangle \in Q$ and $B \subseteq B'$, then $\langle M, A, B' \rangle \in Q$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Monot	onicity U	niversal			

- Q is upward monotone: if $\langle M, A, B \rangle \in Q$ and $B \subseteq B'$, then $\langle M, A, B' \rangle \in Q$
- Q is downward monotone: if $\langle M, A, B \rangle \in Q$ and $B' \subseteq B$, then $\langle M, A, B' \rangle \in Q$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Monot	onicity U	niversal			

- Q is upward monotone: if $\langle M, A, B \rangle \in Q$ and $B \subseteq B'$, then $\langle M, A, B' \rangle \in Q$
- Q is downward monotone: if $\langle M, A, B \rangle \in Q$ and $B' \subseteq B$, then $\langle M, A, B' \rangle \in Q$

Monotonicity Universal (Barwise and Cooper 1981) All simple determiners are monotone.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	0000000000	0000000	000000000
Quantity					

There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \Rightarrow At least three houses on El Camino Real are blue.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	0000000000	0000000	000000000
Quantity					

There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \Rightarrow At least three houses on El Camino Real are blue.

So: 'at least three' is quantitative.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	0000000000	0000000	000000000
Quantity					

There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \Rightarrow At least three houses on El Camino Real are blue.

- So: 'at least three' is quantitative.
 - The first three houses on Cambridge Ave are blue. There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \neq The first three houses on El Camino Real are blue.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	0000000000	0000000	000000000
Quantity					

There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \Rightarrow At least three houses on El Camino Real are blue.

- So: 'at least three' is quantitative.
 - The first three houses on Cambridge Ave are blue. There are exactly as many blue and non-blue houses on El Camino Real as on Cambridge Ave.

 \neq The first three houses on El Camino Real are blue.

So: 'the first three' is not quantitative.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	00000000	0000000000
Quantity	Universal				

Q is quantitative:

if $\langle M, A, B, \ldots \rangle \in \mathbb{Q}$ and $A \cap B, A \setminus B, B \setminus A, M \setminus (A \cup B)$ have the same cardinality (size) as their primed-counterparts, then $\langle M', A', B', \ldots \rangle \in \mathbb{Q}$

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	000000000
Quantity	Universa	l			

• Q is quantitative:

if $\langle M, A, B, \dots \rangle \in \mathbb{Q}$ and $A \cap B, A \setminus B, B \setminus A, M \setminus (A \cup B)$ have the same cardinality (size) as their primed-counterparts, then $\langle M', A', B', \dots \rangle \in \mathbb{Q}$

Quantity Universal (Keenan and Stavi 1986; Peters and Westerståhl 2006)

All simple determiners are quantitative.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Conserva	itivity				

Many French people smoke cigarettes
 Many French people are French people who smoke cigarettes

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Conserva	ativity				

- Many French people smoke cigarettes
 Many French people are French people who smoke cigarettes
- So: 'many' is conservative.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Conserva	itivity				

- Many French people smoke cigarettes
 Many French people are French people who smoke cigarettes
- So: 'many' is conservative.
- So: 'only' is not conservative.

Conservat	tivity Uni	versal			
0000	00000	0000000	000000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

Conservativity Universal (Barwise and Cooper 1981; Keenan and Stavi 1986)

All simple determiners are conservative.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	0000000	000000000
Monoto	nicity [.] F	esults			

Steinert-Threlkeld and Szymanik 2018b

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	0000000	000000000
Quantity	Results				

Steinert-Threlkeld and Szymanik 2018b

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	0000000	00000000
Conser	vativitv:	Results			

Steinert-Threlkeld and Szymanik 2018b

Conserva	tivity: Di	scussion			
Question 0000	Model 00000	Colors 0000000	Quantifiers 0000000000	Verbs 00000000	Conclusion

• No way of 'breaking the symmetry' between $A \setminus B$ and $B \setminus A$

Conserva	tivitv: Di	scussion			
0000	00000	0000000	0000000000	0000000	000000000
Question	Model	Colors	Quantifiers	Verbs	Conclusion

- ${\ }$ ${\ }$ No way of 'breaking the symmetry' between $A\setminus B$ and $B\setminus A$
- Cons as a syntactic/structural constraint, not a semantic universal [See Fox 2002; Sportiche 2005; Romoli 2015]

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Overvie	ew				

1 Main Question

2 (Machine) Learning

3 Color Terms

4 Quantifiers

5 Responsive Verbs

6 Conclusion

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	000000000
Types of	Verbs				

- Jacopo believes that Amsterdam is the capital of the Netherlands.
 - # Jacopo believes where Amsterdam is.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Types of	Verbs				

- Jacopo believes that Amsterdam is the capital of the Netherlands.
 - # Jacopo believes where Amsterdam is.
- # Jacopo wonders that Amsterdam is the capital of the Netherlands.
 Jacopo wonders where Amsterdam is.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Types of	Verbs				

- Jacopo believes that Amsterdam is the capital of the Netherlands.
 - # Jacopo believes where Amsterdam is.
- # Jacopo wonders that Amsterdam is the capital of the Netherlands.
 Jacopo wonders where Amsterdam is.
- Jacopo knows that Amsterdam is the capital of the Netherlands.
 Jacopo knows where Amsterdam is.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Types of	Verbs				

type	declarative	interrogative	example
rogative	х	\checkmark	'wonder'
anti-rogative	\checkmark	х	'believe'
responsive	\checkmark	\checkmark	'know'

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Veridic	ality				

- Meica knows that Carlos won the race.
 - \rightsquigarrow Carlos won the race.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Veridica	ality				

- Meica knows that Carlos won the race.
 - \rightsquigarrow Carlos won the race.
- So: 'know' is veridical with respect to declarative complements.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	0000000	000000000
Veridical	ity				

- Meica knows that Carlos won the race.
 ~> Carlos won the race.
- So: 'know' is veridical with respect to declarative complements.
 - Meica knows who won the race. Carlos won the race.
 - \rightsquigarrow Meica knows that Carlos won the race.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Veridica	lity				

- Meica knows that Carlos won the race.
 - \rightsquigarrow Carlos won the race.
- So: 'know' is veridical with respect to declarative complements.
 - Meica knows who won the race.
 - Carlos won the race.
 - \rightsquigarrow Meica knows that Carlos won the race.
- So: 'know' is veridical with respect to interrogative complements.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	000000000000	0000000	000000000
Veridica	ality				

- Meica knows that Carlos won the race.
 - \rightsquigarrow Carlos won the race.
- So: 'know' is veridical with respect to declarative complements.
 - Meica knows who won the race.
 - Carlos won the race.
 - \rightsquigarrow Meica knows that Carlos won the race.

So: 'know' is veridical with respect to interrogative complements. So: 'know' is veridically uniform.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	00000000
Veridical	lity				

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Veridicali	ty				

- Meica is certain that Carlos won the race.
 - $\not \rightarrow$ Carlos won the race.
- So: 'be certain' is not veridical with respect to declarative complements.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Veridical	ty				

- Meica is certain that Carlos won the race.
 - $\not\sim$ Carlos won the race.
- So: 'be certain' is not veridical with respect to declarative complements.
 - Meica is certain about who won the race. Carlos won the race.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Veridicality					

- Meica is certain that Carlos won the race.
 - $\not \rightarrow$ Carlos won the race.

So: 'be certain' is not veridical with respect to declarative complements.

- Meica is certain about who won the race. Carlos won the race.

So: 'be certain' is not veridical with respect to interrogative complements.
Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Veridical	ty				

- Meica is certain that Carlos won the race.
 - $\not \rightarrow$ Carlos won the race.

So: 'be certain' is not veridical with respect to declarative complements.

- Meica is certain about who won the race. Carlos won the race.
 - $\not \rightarrow$ Meica is certain that Carlos won the race.

So: 'be certain' is not veridical with respect to interrogative complements.

So: 'be certain' is veridically uniform.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	00000000
T I \/		·c ·. –	-, .		

The Veridical Uniformity Thesis

Veridical Uniformity Universal (Spector and Egré 2015; Theiler, Roelofsen, and Aloni 2018)

All responsive verbs are veridically uniform.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Four F	Responsive	Verhs			

		Ver	idical
Verb	Lexical Entry: $\lambda P_T . \lambda p_{\langle s,t \rangle} . \lambda a_e . \forall w \in p : \dots$	Declarative	Interrogative
know	$w \in \text{DOX}^a_w \in P$	\checkmark	\checkmark
wondows	$w \in \text{DOX}^a_w \subseteq info(P) \text{ and } \text{DOX}^a_w \cap q \neq \emptyset \ \forall q \in alt(P)$	\checkmark	х
knopinion	$w \in DOX_w^a$ and $(DOX_w^a \in P \text{ or } DOX_w^a \in \neg P)$	x	\checkmark
be-certain	$\operatorname{DOX}^a_w \in P$	x	x

Table : Four verbs, exemplifying the possible profiles of veridicality.

The semantics are given in terms of *inquisitive semantics* Ciardelli, Groenendijk, and Roelofsen 2018

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	0000000000	0000000	00000000

Veridical Uniformity: Results

Steinert-Threlkeld 2018

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Overvie	ew				

- 1 Main Question
- 2 (Machine) Learning
- 3 Color Terms
- 4 Quantifiers
- 5 Responsive Verbs

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
Explain	ning Unive	ersals			

Why do semantic universals arise?

Because expressions satisfying them are easier to learn.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Explaini	ng Univ	ersals			

Why do semantic universals arise?

Because expressions satisfying them are easier to learn.

We looked at three very different domains:

- Function words: quantifiers
- Content words: attitude verbs, color terms

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	00000000
- I · · ·	1.1.1				

Explaining Universals

Why do semantic universals arise?

Because expressions satisfying them are easier to learn.

We looked at three very different domains:

- Function words: quantifiers
- Content words: attitude verbs, color terms

In each, a general purpose and biologically-inspired model of learning made good on this answer. We take this as strong evidence that learnability does indeed explain semantic universals.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Euturo D	iractions				

 Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
What are the corresponding minimal programs over a LoT (with Steven Piantadosi)?

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Future	Direction	าร			

- Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
 What are the corresponding minimal programs over a LoT (with Steven Piantadosi)?
- 'Scaling up' the computational experiments, e.g., Does CONS arise from the biased linguistic distribution? Mhasawade et al. 2018: NO

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Future	Direction	าร			

- Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
 What are the corresponding minimal programs over a LoT (with Steven Piantadosi)?
- 'Scaling up' the computational experiments, e.g., Does CONS arise from the biased linguistic distribution? Mhasawade et al. 2018: NO
- More universals from more domains, e.g., thematic roles

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Future	Direction	าร			

- Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
 What are the corresponding minimal programs over a LoT (with Steven Piantadosi)?
- 'Scaling up' the computational experiments, e.g., Does CONS arise from the biased linguistic distribution? Mhasawade et al. 2018: NO
- More universals from more domains, e.g., thematic roles
- Integration with models of the evolution of language Recent news: iterated learning with NNs yields monotonicity (with Fausto Carcassi).

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Future	Direction	าร			

 Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
What are the corresponding minimal programs over a LoT (with

Steven Piantadosi)?

- 'Scaling up' the computational experiments, e.g., Does CONS arise from the biased linguistic distribution? Mhasawade et al. 2018: NO
- More universals from more domains, e.g., thematic roles
- Integration with models of the evolution of language Recent news: iterated learning with NNs yields monotonicity (with Fausto Carcassi).
- Studies with humans and animals, e.g., Chemla et al. have recently shown that humans and baboons are biased towards convexity. This should be extended to other universals.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Future	Direction	าร			

- Relation between learnability and (descriptive) complexity, e.g., Does Kolmogorov complexity of Qs predict learnability (with Iris van de Pol)?
 What are the corresponding minimal programs over a LoT (with Steven Piantadosi)?
- 'Scaling up' the computational experiments, e.g., Does CONS arise from the biased linguistic distribution? Mhasawade et al. 2018: NO
- More universals from more domains, e.g., thematic roles
- Integration with models of the evolution of language Recent news: iterated learning with NNs yields monotonicity (with Fausto Carcassi).
- Studies with humans and animals, e.g., Chemla et al. have recently shown that humans and baboons are biased towards convexity. This should be extended to other universals.
- … and more!

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	00000000	000000000
Refere	nces I				

- Barwise, Jon and Robin Cooper (1981). "Generalized Quantifiers and Natural Language". In: *Linguistics and Philosophy* 4.2, pp. 159–219. DOI: 10.1007/BF00350139.
- Berlin, Brent and Paul Kay (1969). *Basic Color Terms: Their Universality and Evolution*. University of California Press.
- Chomsky, Noam (1980). *Rules and Representations*. Oxford: Basil Blackwell.
- Ciardelli, Ivano, Jeroen Groenendijk, and Floris Roelofsen (2018). Inquisitive Semantics. Oxford University Press. URL: http://semanticsarchive.net/Archive/WFjYTUwN/book.pdf.
- Fox, Danny (2002). "Antecedent-Contained Deletion and the Copy Theory of Movement". In: *Linguistic Inquiry* 33.1, pp. 63–96. DOI: 10.1162/002438902317382189.
- Gärdenfors, Peter (2014). The Geometry of Meaning. The MIT Press.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	000000	00000000000	0000000	000000000
Reference	es II				

Gibson, Edward et al. (2017). "Color naming across languages reflects color use". In: *Proceedings of the National Academy of Sciences* 114.40, pp. 10785–10790. DOI: 10.1073/pnas.1619666114.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT Press. URL: https://www.deeplearningbook.org/.

- Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long Short-Term Memory". In: Neural Computation 9.8, pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
 - Hunter, Tim and Jeffrey Lidz (2013). "Conservativity and learnability of determiners". In: *Journal of Semantics* 30.3, pp. 315–334. DOI: 10.1093/jos/ffs014.

Jäger, Gerhard (2010). "Natural Color Categories Are Convex Sets". In: Logic, Language, and Meaning: Amsterdam Colloquium 2009. Ed. by Maria Aloni et al., pp. 11–20. DOI: 10.1007/978-3-642-14287-1_2.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Reference	ces III				

- Keenan, Edward L and Jonathan Stavi (1986). "A Semantic Characterization of Natural Language Determiners". In: *Linguistics and Philosophy* 9.3, pp. 253–326. DOI: 10.1007/BF00630273.
- Lahiri, Utpal (2002). *Questions and Answers in Embedded Contexts*. Oxford University Press.
- Mhasawade, Vishwali et al. (2018). "Neural Networks and Quantifier Conservativity: Does Data Distribution Affect Learnability?" In: *arXiv preprint arXiv:1809.05733*.
- Nielsen, Michael A (2015). Neural Networks and Deep Learning. Determination Press. URL:

http://neuralnetworksanddeeplearning.com/.

Peters, Stanley and Dag Westerståhl (2006). *Quantifiers in Language and Logic*. Oxford: Clarendon Press.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Referen	ces IV				

- Piantadosi, Steven T (2013). "Modeling the acquisition of quantifier semantics: a case study in function word learnability". In: URL: http://colala.bcs.rochester.edu/papers/ piantadosi2012modeling.pdf.
- Pullum, Geoffrey K. and Barbara C. Scholz (2002). "Empirical assessment of stimulus poverty arguments". In: The Linguistic Review 18.1-2, pp. 9–50. DOI: 10.1515/tlir.19.1-2.9.
- Regier, Terry, Paul Kay, and Naveen Khetarpal (2007). "Color naming reflects optimal partitions of color space". In: *Proceedings of the National Academy of Sciences* 104.4, pp. 1436–1441. DOI: 10.1073/pnas.0610341104.
 - Romoli, Jacopo (2015). "A Structural Account of Conservativity". In: Semantics-Syntax Interface 2.1, pp. 28-57. URL: https://www.academia.edu/8736879/A_structural_account_ of_conservativity_final_version_.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	000000000
Referenc	es V				

- Spector, Benjamin and Paul Egré (2015). "A uniform semantics for embedded interrogatives: an answer, not necessarily the answer". In: *Synthese* 192.6, pp. 1729–1784. DOI: 10.1007/s11229-015-0722-4.
- Sportiche, Dominique (2005). "Division of labor between Merge and Move: Strict locality of selection and apparent reconstruction paradoxes". URL: http://ling.auf.net/lingbuzz/000163.
- Steinert-Threlkeld, Shane (2018). "An Explanation of the Veridical Uniformity Universal". URL: https://semanticsarchive.net/ Archive/DI5ZTNmN/UniversalResponsiveVerbs.pdf.
- Steinert-Threlkeld, Shane and Jakub Szymanik (2018a). "Ease of Learning Explains Semantic Universals".
- (2018b). "Learnability and Semantic Universals". In: Semantics & Pragmatics. URL: http://semanticsarchive.net/Archive/ mQ2Y2Y2Z/LearnabilitySemanticUniversals.pdf.
 - **Szabolcsi, Anna (2010).** *Quantification.* Research Surveys in Linguistics. Cambridge: Cambridge University Press.

Question	Model	Colors	Quantifiers	Verbs	Conclusion
0000	00000	0000000	00000000000	0000000	0000000000
Reference	es VI				

- Theiler, Nadine, Floris Roelofsen, and Maria Aloni (2018). "A uniform semantics for declarative and interrogative complements". In: *Journal of Semantics*. DOI: 10.1093/jos/ffy003.
- Uegaki, Wataru (2018). "The semantics of question-embedding predicates". In: Language and Linguistics Compass. URL: https://semanticsarchive.net/Archive/DQ3MDgwN/paper.pdf.

Overview

Nets

RNNs

Long Short-Term Memory Network

Hochreiter and Schmidhuber 1997