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Explaining Universals

Natural Question

Why do universals hold?

Answer 1: learnability.
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

The universals greatly restrict the search space that a language
learner must explore when learning the meanings of expressions.
This makes it easier (possible?) for them to learn such meanings
from relatively small input.
[Compare: Poverty of the Stimulus argument for UG. (Chomsky
1980; Pullum and Scholz 2002) ]

In a sense must be true, but:

May not help much (Piantadosi 2013)
Does not explain which universals are attested.
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Explaining Universals

Natural Question

Why do universals hold?

Answer 2: learnability. (hints in Peters and Westerst̊ahl 2006)

Universals aid learnability because expressions satisfying the
universals are easier to learn than those that do not.

Our goal: make good on this claim by providing a single model of
learning and using it to explain semantic universals from several
different domains.

In particular, we train artificial neural networks to learn the meanings
of different kinds of expressions. Within each kind, we will compare
expressions satisfying proposed universals to those that do not.
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Our goal: argue that universals arise because expressions satisfying
them are easier to learn.

An innovation: using artificial neural networks as a model of learning.

Allows us to test many domains quickly, in a roughly biologically
plausible fashion.
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Existing Study with Children

From: Hunter and Lidz 2013
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Artificial Neural Network

Input layer Hidden layer Hidden layer Output layer

Nielsen 2015; Goodfellow, Bengio, and Courville 2016
http://www.3blue1brown.com/neural-networks
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How to Train a Neural Network

The paradigm method is called supervised learning.

You give the network a whole bunch of labelled examples, i.e. a
bunch of true/correct input-output pairs.

After it processes these examples, it lightly adjusts the weights and
biases in the network so as to make its future guesses better.
It tries to minimize a loss function between the true output and the
network’s output.

This is called (stochastic) gradient descent; there are fancier
variations now.
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The Order of Color Terms

Berlin and Kay 1969; Regier, Kay, and Khetarpal 2007; Gibson et al. 2017
https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language
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Convexity

While natural languages vary in how many color terms they have and
which specific colors are denoted, it seems that all color terms denote
very ‘well-behaved’ regions of color space.

X is convex just in case if x , y ∈ X , then for every t ∈ (0, 1),

tx + (1− t)y ∈ X
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Convexity universal

Convexity Universal (Gärdenfors 2014; Jäger 2010)

All color terms denote convex regions of color space.
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Partitioning CIE-L*a*b* Space

We generated 300 artificial color-naming systems by partitioning the CIELab color
space into distinct categories. CIELab approximates human color vision. It is

perceptually uniform, meaning that the distance in the space corresponds well with the
visually perceived color change.
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Degree of convexity

We varied the degree of convexity, measured as the average area of the
convex hull of each color that is covered by that color.
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Convexity: Results

Steinert-Threlkeld and Szymanik 2018a
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Determiners

Meaning (semantics):

If languages have syntactic constituents (NPs), then their semantic
function is to express generalized quantifiers. (Barwise and Cooper
1981)

Determiners:

Simple: every, some, few, most, five, . . .
Complex: all but five, fewer than three, at least eight or fewer than
five, . . .

Denote type 〈1, 1〉 generalized quantifiers: sets of models of the
form 〈M,A,B〉 with A,B ⊆ M

For example:

JeveryK = {〈M,A,B〉 : A ⊆ B}
JthreeK = {〈M,A,B〉 : |A ∩ B| ≥ 3}
JmostK = {〈M,A,B〉 : |A ∩ B| > |A \ B|}
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Monotonicity

Many French people smoke cigarettes
⇒ Many French people smoke

So: ‘many’ is upward monotone.

Few French people smoke
⇒ Few French people smoke cigarettes

So: ‘few’ is downward monotone.

At least 6 or at most 2 French people smoke cigarettes.
6⇒ (and 6⇐) At least 6 or at most 2 French people smoke.

So: ‘at least 6 or at most 2’ is not monotone.
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Monotonicity Universal

Q is upward monotone:
if 〈M,A,B〉 ∈ Q and B ⊆ B ′, then 〈M,A,B ′〉 ∈ Q

Q is downward monotone:
if 〈M,A,B〉 ∈ Q and B ′ ⊆ B, then 〈M,A,B ′〉 ∈ Q

Monotonicity Universal (Barwise and Cooper 1981)

All simple determiners are monotone.
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Quantity

At least three houses on Cambridge Ave are blue.
There are exactly as many blue and non-blue houses on El Camino
Real as on Cambridge Ave.
⇒ At least three houses on El Camino Real are blue.

So: ‘at least three’ is quantitative.

The first three houses on Cambridge Ave are blue.
There are exactly as many blue and non-blue houses on El Camino
Real as on Cambridge Ave.
6⇒ The first three houses on El Camino Real are blue.

So: ‘the first three’ is not quantitative.
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Quantity Universal

Q is quantitative:
if 〈M,A,B, . . . 〉 ∈ Q and A ∩ B,A \ B,B \ A,M \ (A ∪ B) have the
same cardinality (size) as their primed-counterparts, then
〈M ′,A′,B ′, . . . 〉 ∈ Q

Quantity Universal (Keenan and Stavi 1986; Peters and Westerst̊ahl
2006)

All simple determiners are quantitative.
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Conservativity

Many French people smoke cigarettes
≡ Many French people are French people who smoke cigarettes

So: ‘many’ is conservative.

Only French people smoke cigarettes
6≡ Only French people are French people who smoke cigarettes

So: ‘only’ is not conservative.
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Conservativity: Discussion

No way of ‘breaking the symmetry’ between A \ B and B \ A

Cons as a syntactic/structural constraint, not a semantic universal
[See Fox 2002; Sportiche 2005; Romoli 2015]
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Types of Verbs

Jacopo believes that Amsterdam is the capital of the Netherlands.
# Jacopo believes where Amsterdam is.

# Jacopo wonders that Amsterdam is the capital of the Netherlands.
Jacopo wonders where Amsterdam is.

Jacopo knows that Amsterdam is the capital of the Netherlands.
Jacopo knows where Amsterdam is.
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Types of Verbs

type declarative interrogative example

rogative x X ‘wonder’
anti-rogative X x ‘believe’

responsive X X ‘know’

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018
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Veridicality

Meica knows that Carlos won the race.
 Carlos won the race.

So: ‘know‘ is veridical with respect to declarative complements.

Meica knows who won the race.
Carlos won the race.
 Meica knows that Carlos won the race.

So: ‘know‘ is veridical with respect to interrogative complements.
So: ‘know‘ is veridically uniform.
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Veridicality

Meica is certain that Carlos won the race.
6 Carlos won the race.

So: ‘be certain‘ is not veridical with respect to declarative complements.

Meica is certain about who won the race.
Carlos won the race.
6 Meica is certain that Carlos won the race.

So: ‘be certain‘ is not veridical with respect to interrogative
complements.
So: ‘be certain‘ is veridically uniform.

34 / 49



Question Model Colors Quantifiers Verbs Conclusion

Veridicality

Meica is certain that Carlos won the race.
6 Carlos won the race.

So: ‘be certain‘ is not veridical with respect to declarative complements.

Meica is certain about who won the race.
Carlos won the race.
6 Meica is certain that Carlos won the race.

So: ‘be certain‘ is not veridical with respect to interrogative
complements.
So: ‘be certain‘ is veridically uniform.

34 / 49



Question Model Colors Quantifiers Verbs Conclusion

Veridicality

Meica is certain that Carlos won the race.
6 Carlos won the race.

So: ‘be certain‘ is not veridical with respect to declarative complements.

Meica is certain about who won the race.
Carlos won the race.
6 Meica is certain that Carlos won the race.

So: ‘be certain‘ is not veridical with respect to interrogative
complements.
So: ‘be certain‘ is veridically uniform.

34 / 49



Question Model Colors Quantifiers Verbs Conclusion

Veridicality

Meica is certain that Carlos won the race.
6 Carlos won the race.

So: ‘be certain‘ is not veridical with respect to declarative complements.

Meica is certain about who won the race.
Carlos won the race.
6 Meica is certain that Carlos won the race.

So: ‘be certain‘ is not veridical with respect to interrogative
complements.

So: ‘be certain‘ is veridically uniform.

34 / 49



Question Model Colors Quantifiers Verbs Conclusion

Veridicality

Meica is certain that Carlos won the race.
6 Carlos won the race.

So: ‘be certain‘ is not veridical with respect to declarative complements.

Meica is certain about who won the race.
Carlos won the race.
6 Meica is certain that Carlos won the race.

So: ‘be certain‘ is not veridical with respect to interrogative
complements.
So: ‘be certain‘ is veridically uniform.

34 / 49



Question Model Colors Quantifiers Verbs Conclusion

The Veridical Uniformity Thesis

Veridical Uniformity Universal (Spector and Egré 2015; Theiler,
Roelofsen, and Aloni 2018)

All responsive verbs are veridically uniform.
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Four Responsive Verbs

Veridical
Verb Lexical Entry: λPT .λp〈s,t〉.λae .∀w ∈ p : . . . Declarative Interrogative

know w ∈ doxa
w ∈ P X X

wondows w ∈ doxa
w ⊆ info(P) and doxa

w ∩ q 6= ∅ ∀q ∈ alt(P) X x
knopinion w ∈ doxa

w and (doxa
w ∈ P or doxa

w ∈ ¬¬P) x X
be-certain doxa

w ∈ P x x

Table : Four verbs, exemplifying the possible profiles of veridicality.

The semantics are given in terms of inquisitive semantics Ciardelli,
Groenendijk, and Roelofsen 2018
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Explaining Universals

Why do semantic universals arise?

Because expressions satisfying them are easier to learn.

We looked at three very different domains:

Function words: quantifiers

Content words: attitude verbs, color terms

In each, a general purpose and biologically-inspired model of learning
made good on this answer. We take this as strong evidence that
learnability does indeed explain semantic universals.
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Future Directions

Relation between learnability and (descriptive) complexity, e.g.,
Does Kolmogorov complexity of Qs predict learnability (with Iris van
de Pol)?
What are the corresponding minimal programs over a LoT (with
Steven Piantadosi)?

‘Scaling up’ the computational experiments, e.g.,
Does CONS arise from the biased linguistic distribution?
Mhasawade et al. 2018: NO

More universals from more domains, e.g., thematic roles

Integration with models of the evolution of language
Recent news: iterated learning with NNs yields monotonicity (with
Fausto Carcassi).

Studies with humans and animals, e.g.,
Chemla et al. have recently shown that humans and baboons are
biased towards convexity. This should be extended to other
universals.

. . . and more!
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Nets

Long Short-Term Memory Network
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